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Abstract .

.—The bootstrap is proposed as a method for estimating the precision of

-
forecasts and estimates of parameters of the Kalman Filter model. It is ',1
shown that when the system and the filter is in steady state the bootstrap i T
applied to the Gaussian innovations yields asymptotically consistent standard ]
errors. That the bootstrap works well with moderate sample sizes and supplies
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robustness against departures from normality is substantiated by emperical ev-

idence.
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l., Introduction

o~ f

The Kalman Filter (KF) has become an important and powerful tool for the

O AN R
e

. statistician. Recently, many authors have exploited the state-space model and
KF recursions for estimation and prediction of time series. For example,
Jones (1980) and Harvey and Pierse (.984) use the KF to obtain maximum likeli-

hood estimates of the parameters of ARMA processes when observations are miss-

ing. It has been suggested by Morrison and Pike (1977) and others (cf. Kendall

(1973)) that the KF model provides an appropriate setting within which to
parametrize smoothing and forecasting problems.
To be specific, we suppose that a pxl vector time series {yt; t=0,+1,+2,...}

is being generated by the following dynamic system

yt-xt+vt (1.1) —]

where X, is a zero mean, pXl vector stationary stochastic signal, and v, is

pX1l Gaussian white noise, vt~N(,0,R). The dynamics of the stationary signal

is given by - 4
xt=<bxt_l+wt (1.2) ._ﬁ;.:w

where ¢ is the pXp transition matrix and W, is pxl Gaussian white noise,
-
wt~N(0,Q). Furthermore, {Vt} and {wt} are mutually independent and we assume g
.
that the system and the filter have reached steady state. We remark that the ‘
superficially more general model in which (1.1) is replaced by :
Ye = Mxt +Vt lf::":
where M is a nonsingular known design matrix may be reduced to (1.1) by an - j
N
appropriate change of bases. S




]
Given the parameters of the model, namely, ¢, Q and R, one may obtain the 'ﬁj
minimum mean square error filter and forecasts for the system via the KF re- 1
cursions. However the parameters are rarely known and hence must be estimated. !
It is clear that an inexact filter model will degrade the filter perfor-
mance. In fact, such an inexact model may cause the filter to diverge (cf.
Jazwinski (1970), pp. 244-251). Hence, the precision of the parameter esti-

mates must be evaluated. We propose the bootstrap as a method to evaluate the

precision of parameter estimates, in particular, to handle heteroscedasticity,

to provide robustness against departure from normality in the Gaussian state

and observation errors, and to assist in estimating forecast errors.
Computationally simple estimates of the parameters of the KF model have

been given by Anderson, Kleindorfer, Kleindorfer, and Woodroofe (1969) which

we henceforth denote by AKKW. Their estimates, which are discussed in Section

4, are based on standard ergodic theory and yield strongly consistent estimates of

¢, Q and R under minor restrictions. Hence these estimates, which do not assume

a Gaussian likelihood, have none of the drawbacks of the iterative maximum

likelihood techniques such as Newton-Raphson or scoring (cf. Gupta and Mehra
(1974)) or the EM algorithm (cf, Shumway and Stoffer (1981) and Wu (1983)) which :
may not converge or converge to the wrong stationary point. ‘ i
We suggest that for the KF model, the AKKW estimates are the most reason- j
able to bootstrap since the theory driving the estimators is sound. We make ;ﬁﬂ
bootstrapping these estimates appealing by showing in Section 5, that the 5;5
bootstrap gives the right answers with large samples, that is, it is at least
as sound as the conventional asymptotics. Moreover, if the investigator of "{'j
such a system would rather rely on a maximum likelihood iterative scheme for

parameter estimation, the AKKW estimates could be used to initialize such
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iterative procedures since, as will be seen, the bootstrap will work for the
initial estimates.

Finally, in Section 6, we give emperical evidence of the bootstrap's im-
portance in Kalman filtering by comparing the bootstrap to the conventional
asymptotics in the cases when the likelihood is Gaussian and when the likeli-

. hood is contaminated Gaussian. An example from hydrology is also given,

F: Our goal is to estimate the precision of the parameter estimates of ¢, Q

and R, as well as the precision of the forecasts ;n+1’;n+2"°";n+k' The
techniques used here are based on the bootstrap (cf. Efron (1979)) and the methods
used in bootstrapping least squares estimates discussed in Bickel and Freedman
(1981), Freedman (1981) and Freedman and Peters (1984). It is neted in the

above references that in regression models (static or dynamic), it is appropriate
to resample the centered residuals after estimating the parameters. This is

not possible in the present model (1.1) and (1.2) since the signal is not
observable. However, we may base the procedure on the innovations which are
obtained by taking the conditional expectation of the signal given the data.

Hence, the bootstrap procedure will involve the resampling of the innovation

sequence

£-1 t-1 t=1,...,n (1.3)

where by x:-l we mean E(xtlylyooo,yt_l). Of course xz-l will be obtained re-

;v.
o cursively via the KF.

- Under the conditions stated in the next section we will be able to put this g
&L problem into the nonlinear regression context as discussed in Efron (1979, 'f
P Section 7). That is, we may write ) j
D
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G L P AP P E I RO WOPE DA




yt=gt(¢’Q’R’xt’yl’...’yt-l)+€t’ t=1,2,...,0

where €t are iid zero mean random vectors (namely, the innovations) and gt(-) is

a particularly complicated, but known, nonlinear function of the parameters

t-1

¢, Q, and R, the signal xt, and the data yl""'yt-l' In particular, gt(-)==xt R

the filtered value of the signal.

In the next section we give conditions under which we are able to boot-

strap the innovations, (1.3). The bootstrap procedure is given in Section 3.

2. The Steady-State Innovation Sequence

Throughout the remainder of this paper we make the following assumptions
on the pXp parameter matrices: (Al) Q and R are positive definite, and
(A2) ¢ is nonsingular with spectal norm, p($), less than unity. These condi-
tions ensure the asymptotic global stability of the KF (cf. Deyst and Price
(1968)).

The steady-state KF recursions are given by (=f., Jazwinski (1970))

K=P(P+R) L, (2.1a)

P = [P-P (P+R) 1P]0' +Q, (2.1b)
t t

xt+1=¢xt s (2.1c)
t t-1 t-1

X, =X +K(yt-xt R (2.1d)

In the KF above, K is the steady-state gain matrix, P is the steady-state 'T;'

t=1 t-1
—x
t

t-1
filter error, P = E{(xt-xt )(xt y'}, and xt = E(xt[yl""’yt-l) is the .

steady-state filter estimate of X, based on the data YyreeosYeop® %{‘

Proposition 2.1 Under steady-state and optimal filtering, the pxl vector inno-

vation sequence T
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- t-1 -
l rt 1=yt—xt , t=1l,...,0 (2.2)

is a zero-mean, white Gaussian sequence with covariance matrix P+R.

1 t-1 R ! i - e
l Proof Write r, =et+vt where e, =X —X and note that E(et) E(vt) 0.

The rt_l are Gaussian since they are linear combinations of Gaussian random vec-

tors. To establish the orthogonality of the innovatioms, it is easy to see that

:‘ while rt-1(= y -xt—l) is in the linear space spanned by {y. ,...,y 1,
t t t 1 t
rz-1(= et+vt) is orthogonal to the linear space spanned by {yl”"’yt—l}'
Hence, for s <t,
’ s-1_t-1" s-1_, t-1" .
E(rs r, )=E{rs E(rt ]yl,...,ys )Y} =0.
Also, since e, and v, are uncorrelated we have that
i Cov(rt-l) =Cov{(e ) +Cov(v_) =P+R. r
t t t 0 .
As a final remark, we note that via (2.1c) and (2.1d), we may write Ye
i in terms of the steady-state innovations as -
™™ ] t-'j—l+ t-1
Y, zj=1¢ Kz, 3 T, (2.3)
) which follows from the fact that || ¢j|l + 0 exponentially fast as j +« since
0(P) <1, where Hd>|[2 = trace(¢'d). This result will be useful in establish-
ing the bootstrap procedure.
J
3. The Bootstrap Estimate of Precision
As previously mentioned, the bootstrap technique will be employed by re-
" sampling the steady-state innovation sequence. Recall that under optimal
_:'. filtering the innovation sequence rt-l, t=1l,...,0 is px1 CGaussian white noise,
.

.
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rt-l
t
(2.1b).

~ N(0,P+R) where P is the steady-state error covariance matrix given in

The bootstrap procedure begins be estimating the parameters O={¢,Q,R} of
the model (1.1), (1.2) by some optimal procedure as mentioned in the Intro-

duction. We shall discuss a particular method in Section 4. Call these esti-

mates 0 = {4,Q,R}.

From these preliminary estimates obtain a suboptimal innovation sequence
by filtering (cf. 2.1) under 8. Call this innovation sequence ;E—l. Make the
sequence {;:-1}:=1 independent and identically distributed with distribution

equal to the emperical distribution by putting mass n-1 on each innovation

o)
rz-l, t=1,...,0.

*p—
Next, draw a "bootstrap sample'" of innovations, r t 1, t=1l,...,0 by

t
independent random sampling of the residuals rz 1. That is, sample the rt-l,n

times, with replacement from {rg,r;,...,r . From this we obtain a "boot-

strap sample" of data yl,...,yn by setting (cf., 2.3)

* - =1 ™ O “kp-i-
-r*tl+zti¢>jx tJl

e

N ¢ t=1,...,0 (3.1)

~

where K is the estimated gain matrix obtained via filtering under parameters

A

o.

We make the following suggestions before proceeding with step (3.1).

~

First, as suggested in Freedman (1981), one should center the residuals rt—

before resampling them so that the emperical distribution puts mass n-1 on

“tel1 7 ct-1
r

¢ "My where u =n" Zt =1F i Second, we suggest checking whether the innova-

tions are white. It is known that a suboptimal filter produces correlated in-
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novations (see, for example, Mehra (1970)) and hence this is a check on the
"goodness" of the estimates, Various methods are available for testing the
whiteness of the innovations many of which are listed in Mehra (1970).

* *
Now, suppose that the bootstrap data {yl,...,yn} come from the model

* *
yt=xt+vt . t>1, (3.2a)

* *
x =0 x _+w

. e 21 (3.2b)

* * * *
where v, is pX1l Gaussian white noise vt'~N(0,R ) and is independent of L which
* * * %k k %
is p*1 Gaussian white noise w, "~ N(0,Q ). Assume the parameters ©® ={¢ ,Q ,R }
are unknown and to be estimated.
*
The parameters O are then estimated by the initial optimal procedure to
produce estimates © = {¢ ,Q ,R }. Then, the suboptimal innovation sequence
is resampled and the bootstrap procedure is reiterated.
The entire process is repeated some large number "L" of times obtaining
Ak Nk N
L bootstrap replications Ol,Oé,...,OL. The distribution of the errors
$ -9, Q -Q, R -R (3.3)
are then computed to give an approximation as to the distribution of

® -0, Q-Q, R=R. (3.4)

The bootstrap distribution of the errors (3.3) may then be used to obtain con-
fidence regions and tests of hypotheses about the parameters 0., Justification
of this procedure is given in Section 5, Theorem 5.1.
n -
Forecasting k steps into the future, say xn+j = E(xn+jly1""’yn)’

j=1,2,...,k is easily accomplished via the filter equations (2.1), namely

P e

e

.....

"a%a‘a .'a‘»":'al
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n_ jn -
xn+j ¢ X i=1,...,k. (3.5) ]

The suboptimal forecasts will be obtained via the KF under parameter estimates

© so that 3
“n - AJnn _ J
xn+j ¢ X j=1,...,k (3.6)
will be the actual forecasts. If at each bootstrap replication we obtain
“n* “n* (1) “n* “n* (L)
{xn+l’°"’xn+k} )000,{xn+19""xn+k} (3'7) 4

we may extract the emperical distribution of the forecast residuals

xn+j—xn+j’ J=1,.0.,k (3.8)

which can then be used to approximate the distribution of the actual forecast J

errors .
°n n : 1
xn+j_xn+j’ J=1,...,k. (3.9)

From the distributions of (3.8) we may obtain predictionregiomns for the forecasts . -ﬁ

(3.5).

4. Consistent Parameter Estimates

A A a2

In this section we give the details of the consistent estimation of the para-
meters of the KF model (1.1), (1.2). Recall that the system is in steady-state
and that the parameters O={¢,Q,R} satisfy the conditions (Al) and (A2) given in
Section 2.

The observation sequence may then be written as

©o

y. =v_+ 4.1)

j
t 't ZjnO(1> Ve-j

from which it follows that Ve is a strictly stationary, zero-mean Gaussian se-

K e e e DR P RN .
e AT LI L R P R T P RS SR S L S RO A I U S e AR P
- LN LN ) 3 O S V) - SORLTE S T T S VAL T, W S WAL W lala s 4T e ata s
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quence with covariance matrix R + Zj=0

@jQ¢j .

The estimates of ¢, Q and R are based on the matrices
-1 n '
) =0 oYYy 20 “4.2)

which in view of (4.1) and the Ergodic Theorem are ergodic and converge almost

surely (a.s.) to
A TR B L .
I'(h) = ¢ Zj=0cb Q7 +6y oRs h>0 (4.3)

= Y.
where sh,O is the Kronecker § and T'¢h) Cov(yt,yt_h
An estimate of ¢ is suggested by the fact that E(,ytyé__2 =¢E(yt_ly't_2), t>3,

namely,

A

= ¢tn : n +
o = Ueaqy i ) Qees¥eoVi-2) » 1023 (4.4)

where by + we mean generalized inverse, Estimates of Q and R are suggested

by the facts that

B(1)

E{(y =%y ) =0y, "}

Q+ R+ ¢RO'

2
B(2) =E{(y,~0"Y__)(y,~0%y _,)")

|
=Q+ R+ QP +<I>2R<I>2

which yield

R = 2{8(1) +¢1(B(1) -B(2)0™" ) (4.5)
Q = B(1) ~R - ¢RO' (4.6)




provided that ¢ is nonsingular.

We now state the following theorems which follow directly from the almost

sure convergence of (4.2) to (4.3). Denote the spectral norm of ¢ by p(®).

Theorem 4.1 If p(®) <1, and if ¢ and Q are nonsingular, then ¢n given in (4.,4)

is strongly consistent for ¢.

Theorem 4.2 If 8n is strongly consistent for ¢ and if p($) <1 then

A

2 -lcn 4 _at R 4
B(d) = n LGy 0, O ~%, )" n23 (4.7)

is strongly consistent for B(i), i=1,2. Hence (4.4) and (4.7) provide strongly
consistent estimates for R and Q via (4.5) and (4.6) provided that ¢ and Q are

nonsingular,

Next, we exhibit the behavior of the suboptimal filter and forecasts in the
following theorems and corollary (cf. Theorem 2.4, Theorem 2.5, and Corollary 2.4

of AKKW). Denote positive (semi)-definite by p.(s).d,

A ~

Theorem 4.3 If Q is p.d. and if <I>n,Qn,Rn are strongly consistent estimates of

1,Q,R resnectively for which Qn is p.d. and Rn is p.s.d. for all n>1, then

A

A ~ ~
Pn > P and K, > K a.s. as n~+x where P and Kn are the estimates of the steady-state

filter covariance and gain matrices, respectively.

Theorem 4.4 Let the hypotheses of Theorem 4.3 be satisfied. If in addition,

o(¢). <1, then

-1c0 t “t2
lim n X =x =0 a.S.
N ?ml Y
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Corollary 4.1 If the hypotheses of Theorem 4.4 are satisfied, then -

lim

- t “k~t 2
- 1 2=1| -9 xtl =0 3.5,

X
t+k

for any k>1.

Theorem 4.4 and its corollary will be useful in establishing the bootstrap

principle which is discussed in the next section. We conclude this section with
a statement about the limiting law of the matrices Cn(h) given by (4.2). The
following theorem follows from Hannan (1970, p. 228).

Theorem 4.5 Let y, be generated by (4.1). Let cij(h) and Yij(h) denote the
ijth element of Cn(h) defined in (4.2) and T'(h) defined in (4.3), respectively.

Then, for any integer H>0, the joint law of
/n {cij(h)-Yij(h)} 1,j=1,...,p; h=1,2,...,H

converges to that of a zero-mean normal, the asymptotic covariance between ci (m)

j " .
and cke(n) being fli

2 {y ik(r)\rﬂ(ﬁn-m) + Yiz(ﬁ—n)Y

==

jk(r—m)}. (4.8)

In general, the covariance cf the g (h) involves the forth order cumulants

h]
of the process which vanish in this case since Ye is Gaussian. For more details
concerning the asymptotic covariances of Cij(h)' the reader is referred to

Hannan (1970) or Anderson (1971),

5. The Bootstrap Principle

In this section we justify the techniques established in Section 3. The

mathematical tools used in this section are those of Bickel and Freedman (1981).

I S S
Catatetatel
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The estimate of ¢ given in (4.4) may be rewritten as
$ = ¢+A
n n

where

-y N

A =[n Y], (y-ty Oy a7y M (5.1)
n 8 t=37¢ q’yt—l Ye-2 t=3" t=1Y¢-27 * *

It is clear that the asymptotic distribution of /H(gn-¢)==/ﬁ 4, may then be
established via Theorem 4.5 and the almost sure convergence of (4.2) to (4.3).
Similarly, in view of (4.5) and (4.6), the asymptotic distributions of /E(En—R)
and /H(&n—Q) may be established from the asymptotic distributions of
/H(gn(i)—B(i), i=1,2, which in turn may be established via Theorem 4.5 and the
almost sure convergence of (4.2) to (4.3).
For example, in the univariate case (p=1) it is seen that
0 Var(o_-6) > {V(2,2) +67V(1,1) = 26 V(1,2 }y 2 (1) (5.2a)

n Var(8_(1)-B(1)> 0+¢%)2v(0,0) +46%v(1,1) - 46 (1467 v(0,1)} (5.2b)
n Vat(gn(,Z)-B(Z)) > {+6%2v(0,0) +46%v(2,2) - 462 (1+6*)V(0,2)}  (5.2¢)
where we have the set
V(L,3) = I Y (@) ¥ (rH=1) +Y e+ v (e-D) )

Let Z(1l) be (5.2b) and Z(2) be (5.2c). It can then be shown that

n Var(R -R) > { a+6~3 2z 1y + 6%z (2) - 2(1+¢‘2)¢‘2>:.:12)}% (5.2d)

n Var(Q_~Q) > {Z(1) + (1+62)25(R) - 2(1+62) I (R1) } (5.2e)

where we have set I(R) to be (5.2d), n Cov(Bn(l).Bn(Z))-*Z(IZ) where

£(12) = {1+ ) (1+ )v(0,0) - 2 (1+ #)V(0,2) - 2 1+ €IV(1,0)+4 $V(,2)},
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and n Cov(ﬁn,gn(l))-*Z(Rl) where .
IR = 2A+7HIW) - 3672102,

Now, let starred variables denote those obtained via the bootstrap sample

* *
{yl,..o,yn}. In this manner we denote

n % *?!
h>0 (5.3)

Fy=n"1] y
n t=h+l V¢ t-h Z

as the bootstrap counterpart of Cn(h)’ equation (4.2), upon which all the esti-~

A A ~

mates @n, Qn’ Rh’ Bn(l)’ and Bn(Z) are based.
The bootstrap principle given in Section 3 is now stated in the following

theorem.

Theorem 5.1 Along almost all sample sequences, as n—+=, conditionally on the

data, for all h>0, ———
(1) C:(h) + T'(h) in conditional probability, and

(2) the conditional law of /E(C:(h)-cn(h)) merges with the unconditional law

of JE(cn(h)—F (h)).

From Theorem 5.1 we may then establish that the conditional laws of

A* A
/yn A, /;(Bn(i)—Bn(i)) i=1,2 merge with the unconditional law of vn An and

*
n
/E(Bn(i)—B(i)) i=1,2 by what is essentially Slutsky's theorem.

As previously suggested, the proof of Theorem 5.1 is based on the Mallows
metrics argument of Bickel and Freedman (1981) and is fashioned after Freedman
(1984). 1If RP is a p-dimensional space equipped with the Euclidean norm ||
and «>1, then dﬁfu,v) is the distance between probability measures py and v

1
ay /o

in RP defined as the infimum of E {{u-v| over all pairs of random vectors

U with law u and V with law v,

Before proving Theorem 5.1 we establish the following lemmas.

. . N - .
EIER AN . . I .
IR R S P W Y G P S S
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A ~ A

! Lemma 5.1 Let 6= ($,Q,R) and 6n==(¢n,Qn,Rn) satisfy the conditions of Theorem

!]I 4,4, Let Fn be the emperical distribution function (e.d.f.) of the suboptimal

A A

- innovations rz-l, t=1l,...,n generated by en and let Fn be the e.d.f. of the op-
.
_ timal innovations rt-l t=1,...,n generated by € Then dg(?n,Fn)-+ 0 almost
' - surely (a.s.) as n—+>o,
Proof Noting that rz-q'=yt-x:_l and rz- ==yt-—x:-l, in view of Theorem 4.4, we
have
P2 2 -1c" ft-l _t-1)2
dZ(Fn’Fn)"in zt=llrt T Tt
n A
-1 t-1 t-1,2
n t=llxt - X, |+ 0 a.s.
as n >, 0

t-1

Lemma 5.2 Let Fn be the e.d.f. of the optimal innovations, rt- , t=1l,...,n

and let F be the common distribution of rt-l. Then dg(Fn,F) + 0 a.s. as n *+>,

Proof Since the optimal steady-state innovations are iid (cf. Proposition 2.1),

this follows from Lemma 8.4 of Bickel and Freedman (1981). gd

Now, let wn h(F) be the law of Cn(h), h > 0, when the law of rt—l is F.
?

x
Metrize the y's by d? P and the F's by dg. For notational convenience, we drop

the subscript h from the ¢'s and drop the superscript t-1 from the rt's.
Lemma 5.3 The wn(F) are equiuniformly continuous functions of F on

S = {F: J |r|2dF(r)_<_c2<°°}. (5.4)
rP
Proof The proof of this lemma is similar to Freedman (1984, Lemma 6.3). Fix

*
Fand F in S. Construct iid random vectors (rt,r:), t=1,...,n so that r, has

* *
law F and r, has law F , and

P * 2. _ *2
d5(F,F ) E{lrt rtI },
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*
See Bickel and Freedman (1981, Lemma 8,1). Build Y, from the r, and Ve from
*
the r, as in (2.3). Then, for h>0
dep F) F* < E{I -lzn ( . * k' I}
1 W (B (FOI < n . YeYeeh =YY emt)

*x %'

< El lyt:y;-h 'ytyt-hl}

*
C<Ely loly e [} + Byl lyi 11 5.5

Now, by the Cauchy-Schwartz inequality and the remarks following equation

(4.1)
*
Elly, |1y ~v. 13 < Elly, )%} Bl]y "] %)
< 2 E{|ys-y:|2}.

Using the fact that if U, are independent random vectors, then

3

2 2 2
E{IZjUj| }5sz{|uj| } o+ |zj E{Uj}|

we have that in view of equation (2.3)

[+

i *
E{ IyS—y:IZ} =E{ lEjalth K(rs_j-r:_j) + (rs-rs) lz}
A
<E{]s 12r+dls 12 B4 |uis 317 B w1 (5.6)
1-p

where

s =r1-r:, o=|l¢ll<1, and k=|K|.

*
It is clear that (5.6) is small if F and F are close in d2' g

Now let Qn h(F) be the law of vn Cn(h)’ h > 0, when the law of r, is F.
L]

————
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Metrize the Q's by dgxp and the F's by dg. Again, we drop subscript h from the

R's.

Lemma 5.4 The Qn(F) are equiuniformly continuous functions of F on S§ (cf. 5.4).

The proof of this lemma follows by bounding dgprQO(F),Qn(F*)] in much
*
the same way as d;xp[wn(F), wn(F )] was bounded in Lemma 5.3.

x %1
= | -
For example, put At(h) Y Yeeh YV e-n® then

PXp * .2 1" 2
dy TR (P, @ (PO <El[ATTE A m)]7)

2 -
C<E(la % +n7t I ECA oA ) [, (5.7)

The first part of (5.7) is bounded as in (5.5) to (5.6). Furthermore, by the

Cauchy-Schwartz inequality

2 2,2
E{[A ()+A () }° < E{[a ) [}

which may be bounded (independent of t) as in (5.6).

The proof of part (1) of Theorem 5.1 now follows from Lemmas 5.1, 5.2,
and 5.3. The proof of part (2) of Theorem 5.1 similarly follows from Lemmas
5.1, 5.2, and 5.4, For example, part (1) follows since the conditional law
of C:(h) given the data differs little in the sense of dgxp from the uncondi-
tional law of Cn(h) by Lemma 5.3, because the e.d.f. of the suboptimal innovations,
;n’ differs little in the sense of dg from the law of the optimal innovations,

F, by the combination of Lemmas 5.1 and 5.2. This concludes our proof and this

section,
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: 6. Examples
{

In this section we submit three univariate examples as emperical evidence

of the bootstrap's performance as an aid in Kalman filtering.

. 6.1 Simulation: Normal Errors

In this example we generated n =100 Gaussian observations from the model
(1.1), (1.2) with ¢=0.8, Q=4.0, and R=1,0, Each parameter estimate was boot-
t: strapped L =100 times, Table 6.1.1 gives the summary results of 30 runs; the
; true asymptotic values are obtained via (5.2) and are listed as standard errors.
The sample standard errors obtained by inserting estimates for the true values

into (5.2) are also listed.

TABLE 6.1.1
SE(¢) SE(Q) SE(R)

Mean St., Dev. Mean St. Dev, Mean St. Dev.

Bootstrap 0.106 0.030 1,242 0,256 0.779 0.361
Sample 0.153 0.068 1.749 0,421 1.070 0.198
True 0.083 1.269 0,843

Table 6.1.1: Summary of the standard errors of 30 runs of the bootstrap procedure
(L=100) with n =100 normal observations from the model (1.1), (1.2) with ¢ =0,8,
Q=4,0, R=1,0.

Table 6.1.2 contains the summary of the centered innovations from the 30 runs
described above. The standard deviation of the 100 innovations as well as the
first five autocorrelations are listed, From (2.1) we may calculate the true
standard deviation of the innovations, VP+R = 2,35, Also, for large sample sizes
n from 1id data, the autocorrelations have approximate means and standard devia-

tions of -1/n and 1/Vn, respectively.
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TABLE 6.1.2

Py

Sample True
STANDARD
DEVIATION 2.380+0.168 2,350
AUTOCORRELATION
LAG: 1 -0.006+0,213 -0.01+0.10
~ 2 -0.007+0.069 -0.01+0.10
. 3 0.033+0.098 -0.01+0.10
4 =0.025+0.102 -0.01+0.10
5 =0.016+0.121 -0.01+0.10
)

Table 6.1.2: Summary (mean + st.dev,) of the innovations from 30 runs of the
Kalman Filter for n =100 normal observations from the model (1.1), (1.2) with
¢=0.8, Q=4.0, R=1.,0.

6.2 Simulation: Contaminated Normal Errors

In this example we generated n =100 contaminated normal observations from
the model (1.1), (1.2) with ¢ =0.8, Q=4,0(90%) +16.0(10%) =5.2, and R=1.0(90%)
+ 9.0(10%) =1.8. That is, the state errors are 90%N(0,4) + 10ZN(0,16) and the
observation errors are 907N(0,1) + 10ZN(0,9). The true asymptotic variances of
the estimates must now include the forth cumulants of the error sequences (cf.

Hannan (1970) or Anderson (1971)) so that V(i,j) of (5.2) is adjusted to

8 where ¥ and ¥ are the forth cumulants =
i,073,0 w v <
of the state and observation error sequences, respectively, Yx(i) is Cov(xt,xt+i), ' ';
’ 2 2

Ow and ov are the variances Q and R of the state and observation error sequences ]

. -4 -2
v(i,1) +e, {x(i)Yx(j)ow +x, 0, 8

) )
and 1,0°°4,0 are the Kronecker deltas.

Table 6 .2.1 gives the summary results of 30 runs in which each parameter
estimate was bootstrapped L =100 times. The true asymptotic standard errors

are obtained as described above and the sample standard errors are calculated f1f~
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i by inserting estimates for the true values in (5.2). - d

TABLE 6.2.1

: =
| SE($) SE(Q) SE(R) E
Mean St.Dev. Mean St.Dev, Mean St.Dev, :

Bootstrap 0.110 0,024 2,141 0.442 1.383 0.437 : E

: Sample 0.174 0,083 2,793 0.674 1,758 0.374 i
True 0.086 1.848 1.268 :

Table 6.2.1: Summary of the standard errors of 30 runs of the bootstrap procedure
(L=100) with n=100 observations from the model (1.1), (1.2) with ¢$=0.8, Q=5.2,
R=1.8 and 10% contaminated errors.

e

»
The summary of the centered innovations obtained in this simulation is
i given in Table 6.2.2. In this case the true standard deviation of the innova- -~:
tions is vP+R = 2,74, ) 1
TABLE 6.2.2
i Sample True r w:
STANDARD :
DEVIATION 2.754+0.234 2,737
) AUTOCORRELATION
LAG: 1 -0.014+0.019 -0.01+0.10 1
2 =0.009+0.061 -0.0140.10 :
. 3 0.032+0.102 ~0.01+0.10 -
. oY
) 4 -~0.018+0.095 -0.0140.10 9
5 =~0.026+0.719 -0.01+0.10 )
, Table 6.2.2: Summary (mean + st.dev.) of the innovations from 30 runs of the ]
. Kalman Filter for n =100 observations from the model (1.1), (1.2) with ¢ =0.8, )
: Q=5.2, R=1.8 and 10% contaminated errors. .
)
B
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6.3 Annual Flows of the Géta River, Sweden

The following data are the annual flows of the Gota River near Sjotop-Vanersburg
for the period 1901-1950. The data are in the form of modular values (actual

annual flows divided by the mean) as given by Salas et al. (1980).

Years
01-10 0.935 0.662 0.950 1.121 0.880 0.802 0.856 1.C80> 0,959 1.345
11-20 1.153 0.929 1.158 0.957 0.705 0,905 1.000 0.918 0,907 0.991
21-30 0.994 0.701 0.692 1.086 1.306 0.895 1.149 1.297 1.168 1.218
31-40 1.209 0.974 0.834 0.638 0.991 1,198 1,091 0.892 1.020 0.869
41-50 0.772 0.606 0.739 0.813 1.173 0.916 0.88 0.601 0,720 0.955

Model (1,.1), (1.2) was fitted to the data and the standard errors of the
estimates were obtained by conventional asymptotics (sample) and by the boot-

strap with L =100 iterations., The results are given in Table 6.3.1.

TABLE 6,3.1

Parameters
® Q R
1., Estimates 0.9902 0.0273 0.0067
2. Standard
Errors:
Sample 2.5410 0.0714 0.0342
Bootstrap 0.0916 0.0088 0.0051

Table 6.3.1: Summary of parameter estimates and estimated standard errors,
sample and bootstrap (L =100), obtained by fitting (1.1), (1.2) to the Gota
River data.

We note that the standard errors obtained via conventional asymptotics
are unreasonably large and hence would be useless to the investigator of this

system., This situation is probably due to the fact that the signal is close to

nonstationarity (¢ =0.99), The bootstrap however, provides more reasonable es-
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timates for the precision of the parameter estimates.

The bootstrap also allows us to obtain prediction intervals. We pre-

AASO

dicted x., to be ¢x50-= 0.9029, where xgg = 0,9118 is obtained by filtering

51
under ¢, Q, and R. The filter was initialized by the mean and the variance

of the data. The bootstrap estimate of the prediction error SE(ﬁSl), is thus

2y 050 _
SE($) x5 = 0. 0835.

The steady state filter error Pl/2 1/2(x xz_l)2 was estimated by fil-

tering under ¢, Q, and R and a value of 0.1847 was obtained. The standard error
of the 50 innovations rt-&'=(yt-x§—l) t=1,...,50, was 0,202 and the es-
timated autocorrelation function for the first 12 lags is: ~0.066, -0,374,

-0.037, 0.044, -0,157, 0,010, 0.101, 0.073, -0.069, 0.033, 0,057, and -0.066.

............
-----------




oy
-

(1]

(2]

[3)

(4]

(5]

(61

(71

(8]

{9]

{10]

[11]

{12]

(13]

[14]

22

References

Anderson, T.W. (1971). The Statistical Analysis of Time Series, Wiley,
New York.

Andersor., W.N., Kleindorfer, G.B., and Kleindorfer, P.R., and Woodroofe,
M.B. (1969). Consistent estimates of the parameters of a linear system.
Ann. Math, Stat., 6, 2064-2075.

Bickel, P.J. and Freedman, D.A. (1981). More on bootstrapping regression
models, Technical Report, Statistical Dept., Univeristy of California,
Berkeley.

Deyst, J.J. and Price, C,F. (1968)., Conditions ofr asymptotic stability
of the discrete minimum variance linear estimator, IEEE Trans. on Aut.
Control, AC-13, 702-705.

Efron, B. (1979). Bootstrap methods: another look at the jackknife,
Annals of Statistics, 7, 1-26.

Freedman, D.A. (1981). Bootstrapping regression models, Annals of Statis-
ties, 9, 1218-1228.

Freedman, D.A. (1984). On bootstrapping two-~stage least square estimates
in stationary linear models, Annals of Statistics, 12, 827-842,

Freedman, D.A. and Peters,.S.C. (1984), Bootstrapping a.regression
equation: some empirical results, Journal of the American Statistical
Association, 79, 97-106.

Gupta, N,K. and Mehra, R.K. (1974). Computational aspects of maximum
likelihood estimation and reduction in sensitivity function calculations.
IEEE Trans. Aut, Cont., AC~19, 774-783,

Hannan, E.J. (1970). Multiple Time Series, Wiley, New York.

Harvey, A.C, and Pierse, R.,G., (1984), Estimating missing observations
in economic time series, Journal of the American Statistical Association,
79, 125-131.

Jazwinski, A,H. (1970). Stochastic Processes and Filtering Theory.
Academic Press, New York.

Jones, R,H. (1980). Maximum likelihood fitting of ARMA models to time
series with missing observations. Technometrics, 22, 389-395.

Kendall, M.G. (1973). Time Series, Hafner Pressm New York.

J{15] Mehra, R.K. (1970). On the identification of variances and adaptive
Kalman filtering, IEEE Trans. on Aut. Control, AC-15, 175-184,

[16] Morrison, G,W. and Pike, D.H. (1977). Kalman filtering applied to sta-

P .
PR e . Lt ettt et .

Lttt o0 o B

LIPS W L P AP Sl i S VPR NN S PR N, . PR O A

tistical forecasting, Management Science, 23, 768-774,

At

L.ty "L" L

ha o o o o

aindictdoocelintll ool it ol el B it T a8 Tt Tt TPt ad "® s "e " a"p e _."ac




DRI Sl e

Py —g——

23
L
4 (17} salas, J.D., Delleur, J.W., Yevjevich, V. and Lane, W.L. (1980). Applied
Modeling of Hydrologic Time Series, Water Resources Publications, Littleton,

Colorado.

[18] Shumway, R.H. and Stoffer, D.S. (1982). An approach to time series
smoothing and forecasting using the EM algorithm, J. Time Series Anal.,
3, 253-264.

1 [19] Wu, C.F. (1983). On the convergence of the EM algorithm. Annals of Sta-
} tistics, 11, 95-103,

DNAe s i o




UNCLASSIFTED

SECURITY CLASSIFICATION OrTHIS PAGE

REPORT DOCUMENTATION PAGE

19 REPOAT SECURITY CLASSIFICATION

UNCLASSIFIED

16. RESTRICTIVE MARKINGS

28 SECURITY CLASSIFICATION AUTHORITY

2© DECLASSIFICATION/OOWNGRADING SCHEDULE

3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited.

4 PERFOAMING ORGANIZATION REPORT NUMBERI(S)

84-51 -

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- 85-0014

68 NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL

{11 apphcable )

University of Pittsburgh

78. NAME OF MONITORING ORGANIZATION

Air Force Office of Scientific Research

6c ADDRESS (City. Stote and ZIP Code)
Center for Multivariate Analysis
515 Thackeray Hall, Pittsbur~rh PA

15260

7b. ADDRESS (City, State and ZIP Code!
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332-6448

Gs. NAME OF FUNDING/SPONSORING
ORGANIZATION

AFOSR

Bb. OFFICE SYMBOL
(1/ applicabie)

NM

9. PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER

F49620-82-K-0001

8 ADODRESS (City, State and ZIP Code}

Bolling AFB DC 20332-6448

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO
61102F 2304 A5

11 TITLE (Include Security Clasaification)
BOOTSTRAPPING THE KALMAN FILTER

12. PERSONAL AUTHORI(S)

D.S. Stoffer
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Doy 15. PAGE COUNT
Technical FROM TO DEC 84 23

18. SUPPLEMENTARY NOTATION

COSATI CODES
GRAOUP

SUB. GA.

18. SUBJECT TERMS /Continue on reverse iIf necessary onq identify by dlock number)
Bootstrap; Kalman filter; forecasting; robustness.

asymptotically consistent standard errors.

by emperical evidence.

19 ABSTRACT (Continue on reverse if necessary and 1dentify by dblock number)
The bootstrap is proposed as a method for estimating the precision of forecasts and

estimates of parameters of the Kalman filter model.
the filter is in steady state the bootstrap applied to the Gaussian innovations yields
That the bootstrap works well with moderate
sample sizes and supplies robustness against departures from normality is substantiated

It is shown that when the system and

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFieo/unLimiTED B same as mer. O pric users O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

220. NAME OF AESPONSIBLE INDIVIDUAL
MAJ Brian W. Woodruff

22p TELEPHONE NUMBER
tInclude Area Code)

5027

22c OFFICE SYMBOL

(202) 767- NM
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 iS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
: 2 ion?. .‘; 3 -: .l ; Fncmerh -~ .:- -‘..'.' T .‘\;. ..;-: o, .-. i :'.*:;;.:" b :3._: -t '.; S:..\ i 5_‘.- :\}; ::\.. ;:.‘..:_'.L ;.




i

}
L

- i
W '

FILMED

3—85




